Determine the necessary mass, volume, or concentration for preparing a solution.
This is a demo store. No orders will be fulfilled.
| SKU | Size | Availability |
Price | Qty |
|---|---|---|---|---|
|
S190702-25g
|
25g |
2
|
$28.90
|
|
|
S190702-100g
|
100g |
5
|
$55.90
|
|
|
S190702-500g
|
500g |
3
|
$77.90
|
|
| Synonyms | EC 237-081-9 | Na4[Fe(CN)6] | tetrasodium;iron(2+);hexacyanide | Ferrate(4-), hexakis(cyano-C)-, tetrasodium | UNII-5HT6X21AID | Natriumhexazyanoferrat(II) | Sodium ferrocyanide, AldrichCPR | CHEBI:30061 | HSDB 742 | sodium hexacyanidoferrate(II) | Sodium |
|---|---|
| Specifications & Purity | Reagent grade |
| Storage Temp | Room temperature |
| Shipped In | Normal |
| Grade | Reagent Grade |
Taxonomy Tree
| Kingdom | Inorganic compounds |
|---|---|
| Superclass | Mixed metal/non-metal compounds |
| Class | Transition metal organides |
| Subclass | Transition metal nitrides |
| Intermediate Tree Nodes | Not available |
| Direct Parent | Transition metal nitrides |
| Alternative Parents | Transition metal cyanide salts Inorganic sodium salts Inorganic nitrides Inorganic cyanides |
| Molecular Framework | Not available |
| Substituents | Transition metal nitride - Transition metal cyanide salt - Inorganic sodium salt - Inorganic nitride - Inorganic salt - Inorganic cyanide |
| Description | This compound belongs to the class of inorganic compounds known as transition metal nitrides. These are inorganic compounds of nitrogen where nitrogen has a formal oxidation state of -3, and the heaviest metal atom is a transition metal. |
| External Descriptors | Not available |
|
|
|
| Pubchem Sid | 488183001 |
|---|---|
| Pubchem Sid Url | https://pubchem.ncbi.nlm.nih.gov/substance/488183001 |
| IUPAC Name | tetrasodium;iron(2+);hexacyanide |
| INCHI | InChI=1S/6CN.Fe.4Na/c6*1-2;;;;;/q6*-1;+2;4*+1 |
| InChIKey | GTSHREYGKSITGK-UHFFFAOYSA-N |
| Smiles | [C-]#N.[C-]#N.[C-]#N.[C-]#N.[C-]#N.[C-]#N.[Na+].[Na+].[Na+].[Na+].[Fe+2] |
| Isomeric SMILES | [C-]#N.[C-]#N.[C-]#N.[C-]#N.[C-]#N.[C-]#N.[Na+].[Na+].[Na+].[Na+].[Fe+2] |
| PubChem CID | 26129 |
| UN Number | 3077 |
| Packing Group | III |
| Molecular Weight | 303.91 |
Find and download the COA for your product by matching the lot number on the packaging.
| Lot Number | Certificate Type | Date | Item |
|---|---|---|---|
| Certificate of Analysis | Jan 10, 2025 | S190702 | |
| Certificate of Analysis | Jan 10, 2025 | S190702 | |
| Certificate of Analysis | Jan 10, 2025 | S190702 | |
| Certificate of Analysis | Jan 10, 2025 | S190702 | |
| Certificate of Analysis | Jun 08, 2023 | S190702 | |
| Certificate of Analysis | Jun 08, 2023 | S190702 | |
| Certificate of Analysis | Jun 08, 2023 | S190702 | |
| Certificate of Analysis | Jun 08, 2023 | S190702 | |
| Certificate of Analysis | Jun 08, 2023 | S190702 | |
| Certificate of Analysis | Jun 08, 2023 | S190702 | |
| Certificate of Analysis | May 24, 2023 | S190702 | |
| Certificate of Analysis | May 24, 2023 | S190702 | |
| Certificate of Analysis | May 24, 2023 | S190702 | |
| Certificate of Analysis | May 24, 2023 | S190702 | |
| Certificate of Analysis | May 24, 2023 | S190702 | |
| Certificate of Analysis | May 23, 2023 | S190702 | |
| Certificate of Analysis | May 23, 2023 | S190702 | |
| Certificate of Analysis | May 23, 2023 | S190702 | |
| Certificate of Analysis | May 23, 2023 | S190702 | |
| Certificate of Analysis | Feb 11, 2023 | S190702 | |
| Certificate of Analysis | Jun 27, 2022 | S190702 | |
| Certificate of Analysis | Jun 27, 2022 | S190702 | |
| Certificate of Analysis | Jun 27, 2022 | S190702 | |
| Certificate of Analysis | Jun 27, 2022 | S190702 | |
| Certificate of Analysis | Jun 27, 2022 | S190702 |
| Molecular Weight | 303.910 g/mol |
|---|---|
| XLogP3 | |
| Hydrogen Bond Donor Count | 0 |
| Hydrogen Bond Acceptor Count | 12 |
| Rotatable Bond Count | 0 |
| Exact Mass | 303.912 Da |
| Monoisotopic Mass | 303.912 Da |
| Topological Polar Surface Area | 143.000 Ų |
| Heavy Atom Count | 17 |
| Formal Charge | 0 |
| Complexity | 127.000 |
| Isotope Atom Count | 0 |
| Defined Atom Stereocenter Count | 0 |
| Undefined Atom Stereocenter Count | 0 |
| Defined Bond Stereocenter Count | 0 |
| Undefined Bond Stereocenter Count | 0 |
| The total count of all stereochemical bonds | 0 |
| Covalently-Bonded Unit Count | 11 |
| 1. Xinyu Dong, Haifeng Wang, Jiawei Wang, Qian Wang, Hao Wang, Wenhao Hao, Fanghai Lu. (2023) Preparation of Low-Defect Manganese-Based Prussian Blue Cathode Materials with Cubic Structure for Sodium-Ion Batteries via Coprecipitation Method. MOLECULES, 28 (21): (7267). |
| 2. Shuhui Fan, Yanan Hu, Tan Zhang, Qiang Zhao, Jinping Li, Guang Liu. (2024) Highly selective environmental electrocatalytic nitrogen reduction to ammonia on Fe2(MoO4)3/C composite electrocatalyst. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 51 (1198). |
| 3. Liang Zhaoheng, Tian Fei, Yang Gongzheng, Wang Chengxin. (2023) Enabling long-cycling aqueous sodium-ion batteries via Mn dissolution inhibition using sodium ferrocyanide electrolyte additive. Nature Communications, 14 (1): (1-11). |
| 4. Yuming Xi, Yangcheng Lu. (2022) Electrochemically Active Mn-Doped Iron Hexacyanoferrate as the Cathode Material in Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 14 (34): (39022–39030). |
| 5. Xiaoqi Liu, Tianyu Li, Zhizhang Yuan, Xianfeng Li. (2022) Low-cost all-iron flow battery with high performance towards long-duration energy storage. Journal of Energy Chemistry, 73 (445). |
| 6. Minghui Ye, Shunzhang You, Jiaming Xiong, Yang Yang, Yufei Zhang, Cheng Chao Li. (2022) In-situ construction of a NaF-rich cathode–electrolyte interface on Prussian blue toward a 3000-cycle-life sodium-ion battery. Materials Today Energy, 23 (100898). |
| 7. Yangfan Ming, Gang Li. (2021) One-pot synthesis of FeCu–SSZ-13 using Cu–TEPA as the template by adding iron complexes. Catalysis Science & Technology, 11 (22): (7467-7474). |
| 8. Yuming Xi, Yangcheng Lu. (2021) Facile synthesis and cycling performance maintenance of iron hexacyanoferrate cathode for sodium-ion battery. JOURNAL OF POWER SOURCES, 513 (230554). |
| 9. Yuemei Duan, Jia Chen, Yan Jin, Qiuyun Tu, Shuhui Wang, Juan Xiang. (2021) Antibody-Free Determinations of Low-Mass, Soluble Oligomers of Aβ42 and Aβ40 by Planar Bilayer Lipid Membrane-Based Electrochemical Biosensor. ANALYTICAL CHEMISTRY, 93 (7): (3611–3617). |
| 10. Zhiguo Hou, Xueqian Zhang, Huaisheng Ao, Mengke Liu, Yongchun Zhu, Yitai Qian. (2019) Passivation effect for current collectors enables high-voltage aqueous sodium ion batteries. Materials Today Energy, 14 (100337). |
| 11. Hongbin Chu, Kun Jiang, Guohui Li, Zhigang Zhao, Qingwen Li, Fengxia Geng. (2019) Flexible Quasi-Solid-State Sodium-Ion Batteries Built by Stacking Two-Dimensional Titania Sheets with Carbon Nanotube Spacers. ACS Applied Energy Materials, 2 (8): (5707–5715). |
| 12. Tianxing Wu, Miaomiao Han, Xiaoguang Zhu, Guozhong Wang, Yunxia Zhang, Haimin Zhang, Huijun Zhao. (2019) Experimental and theoretical understanding on electrochemical activation and inactivation processes of Nb3O7(OH) for ambient electrosynthesis of NH3. Journal of Materials Chemistry A, 7 (28): (16969-16978). |
| 13. Sibo Chen, Mingli Li, Siyuan Yang, Xin Li, Shengsen Zhang. (2019) Graphitied carbon-coated bimetallic FeCu nanoparticles as original g-C3N4 cocatalysts for improving photocatalystic activity. APPLIED SURFACE SCIENCE, 492 (571). |
| 14. Ting Yin, Sheng Zhang, Mengxuan Li, Carl Redshaw, Xin-Long Ni. (2019) Macrocycle encapsulation triggered supramolecular pKa shift: A fluorescence indicator for detecting octreotide in aqueous solution. SENSORS AND ACTUATORS B-CHEMICAL, 281 (568). |
| 15. Shuaitong Wang, Yang Liu, Jinrui Huang, Shizhe Liu, Shilong Li, Mengran Liu, Zhichao Ma, Tianfang Yang, Yingjie Yang, Shuyan Gao. (2025) Coupling layered spraying with Joule heating to achieve efficient CuZn alloy synthesis for self-powered nitrate reduction to ammonia. Nano Energy, 138 (110843). |
| 16. Dong Zhang, Dafeng Zhang, Dong Fan, Junchang Liu, Hengshuai Li, Xipeng Pu, Haiquan Hu, Feng Guo, Peiqing Cai. (2024) Decorating Cd0.9Zn0.1S Using a Magnetic FeCo@ N-Doped Graphite Carbon Layer to Achieve Considerable Hydrogen Evolution Efficiency. ACS Sustainable Chemistry & Engineering, 12 (21): (8236-8246). |
| 17. Jia Chen, Qi Liu, Yongchun Fu, Juan Xiang. (2024) DNA Nanocage-Assisted Size-Selective Recognition and Quantification toward Low-Mass Soluble β-Amyloid Oligomers. ANALYTICAL CHEMISTRY, 96 (28): (11397-11403). |
| 18. Peng Huang, Yifei Wang, Shengling Yuan, Hui Huang, Lijia Xu, Yongpeng Zhao. (2024) Effect of entropy evolution on electromagnetic response mechanism of carbon-coated medium- and high-entropy oxides. CERAMICS INTERNATIONAL, |
| 19. Yibo Xu, Long Cao, Hele Hua, Rui Li, Yunfang Wang, Jianxin Liu, Yawen Wang, Caimei Fan. (2025) Electrocatalytic reduction of nitrate to ammonia on CoMoO4 microspheres: A comparative study with Co3O4. CHEMICAL ENGINEERING JOURNAL, 508 (160985). |
| 20. Yang Liu, Shuyu Niu, Yu Zou, Shenglong Huang, Yunxuan Shi, Shuyan Gao, Panagiotis Tsiakaras. (2025) Electrochemical production of ammonia: Nitrate reduction over novel Cu-Ni-Al metallic glass nanoparticles used as highly active and durable catalyst. APPLIED CATALYSIS B-ENVIRONMENTAL, 363 (124729). |
| 21. Huang Da-Shuai, Qiu Xiao-Feng, Huang Jia-Run, Mao Min, Liu Lingmei, Han Yu, Zhao Zhen-Hua, Liao Pei-Qin, Chen Xiao-Ming. (2024) Electrosynthesis of urea by using Fe2O3 nanoparticles encapsulated in a conductive metal–organic framework. Nature Synthesis, (1-10). |
| 22. Yang Liu, Shenglong Huang, Jiajia Lu, Shuyu Niu, Pei Kang Shen, Zhuofeng Hu, Panagiotis Tsiakaras, Shuyan Gao. (2024) Ni0.25Cu0.5Sn0.25 Nanometallic Glasses As Highly Efficient Catalyst for Electrochemical Nitrate Reduction to Ammonia. ADVANCED FUNCTIONAL MATERIALS, (2411325). |
| 23. Fei Dou, Fengchen Guo, Bo Li, Kai Zhang, Nigel Graham, Wenzheng Yu. (2024) Pulsed electro-catalysis enables effective conversion of low-concentration nitrate to ammonia over Cu2O@Pd tandem catalyst. JOURNAL OF HAZARDOUS MATERIALS, 472 (134522). |
| 24. Tiantian Zhao, Jiao Hu, Fengqin Chang, Xusheng Xie, Xue Zhao, Abdukader Abdukayum, Sanshuang Gao, Guangzhi Hu. (2025) Self-supported copper/copper oxide microspheres for efficient electrocatalytic removal of low-concentration nitrate from aqueous solutions. SEPARATION AND PURIFICATION TECHNOLOGY, 354 (128872). |
| 25. Cai Yi-Meng, Li Yang-Hua, Xiao Yi, Meyer Quentin, Sun Qian, Lai Wan-Jing, Zhao Shu-Wen, Li Jun, Zhang Lin-Jie, Wang Han, Lin Zhang, Luo Jun, Han Li-Li. (2024) Synergistic rare-earth yttrium single atoms and copper phosphide nanoparticles for high-selectivity ammonia electrosynthesis. RARE METALS, (1-10). |
| 26. Yiping Wang, Yang Jin, Yanjun Zhong, Pan Zhu, Jun Li. (2024) Synthesis of Iron-Based Prussian Blue Analogues with Ultralong Cycle Performance in a Novel T-Shaped Collision Microreactor. ACS Applied Materials & Interfaces, 16 (40): (53980-53993). |
| 27. Zhengtao Jia, Yuxiang Zhu, Yan Wang, Shaohui Wang, Meng Jiang, Qiufan Sun, Xiang Zhong, Jianfeng Yao. (2025) Tuning metal centers in hexaazatrinaphthalene tricarboxylic acid-based coordination polymers for efficient nitrogen electroreduction into ammonia. Journal of Environmental Chemical Engineering, 13 (116065). |