This is a demo store. No orders will be fulfilled.

Wet stability soft skin electronic sensor based on biochar-polypyrrole conductive hydrogel

Materials Today Communications [2024]
Xu Wang, Shuyao Li, Jiafei Ren, Haobo Ma, Jian Sun, Peihong Xue, Juan Liu
ABSTRACT

Hydrogels have the softness and stretchability of similar tissues and are considered as materials for smart flexible electronic devices. However, the durability and reliability of most polypyrrole hydrogels in wet environments are still insufficient, especially its wet stability in the wet environment of seawater, limiting its development as flexible conductive electrodes. In this study, the porous solid carbon material after pyrolysis of natural materials is introduced into hydrogel, which is conducive to the migration and propagation of electrolyte ions, and can improve the moisture resistance stability of hydrogel. At the same time, polypyrrole material is introduced to further improve its electrical conductivity. With this method, the conductivity of conventional hydrogel materials can be increased by 12.2 times. The triboelectric nanogenerator device prepared with polypyrrole/biochar composite hydrogel can not only accurately monitor human joint motion, but also easily light up at least 300 light-emitting diodes when rubbed with aluminum materials, which proves the practical performance of the device. This study provides an alternative material for sensing hydrogels that can be used for human health monitoring of marine operators.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.