This is a demo store. No orders will be fulfilled.

Unveiling Plasmon-Induced Suzuki–Miyaura Reactions on Silver Nanoparticles via Raman Spectroscopy

ACS Catalysis [2024]
Yunjia Wei, Dexiang Chen, Xingce Fan, Xiao Tang, Lei Yao, Xing Zhao, Qiang Li, Jiawei Wang, Teng Qiu, Qi Hao
ABSTRACT

The Suzuki–Miyaura coupling reaction is an efficient organic method for synthesizing biphenyl products. However, its conventional reliance on toxic soluble organometallic palladium catalysts or expensive palladium nanoparticles, along with the need for elevated temperatures and prolonged reaction times, presents a significant challenge. Herein, we demonstrate a palladium-free approach using plasmonic silver nanoparticles that enables the Suzuki–Miyaura coupling reaction to proceed at room temperature under visible light. Utilizing the surface-enhanced Raman scattering characteristics of silver, we conducted dynamic self-monitoring of the reaction. Our findings reveal that this plasmon-induced Suzuki–Miyaura coupling reaction fundamentally operates as a heterogeneous reaction involving coupling between radicals, distinct from conventional palladium-based reactions. Moreover, the cleavage of C–Cl and C–B bonds, fundamental prerequisite to the coupling, is driven by plasmonic hot electrons and plasmon-induced reactive oxygen species, respectively. These findings not only provide insights into the design and regulation of plasmonic catalysts but also enhance theoretical understanding of the Suzuki–Miyaura reaction in a broader context.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.