This is a demo store. No orders will be fulfilled.

Ultrasensitive Fluorescent Microsensors Based on Aptamers Modified with SYBR Green I for Visual Quantitative Detection of Organophosphate Pesticides

ANALYTICAL CHEMISTRY [2024]
Qianru Zhang, Anqi Liu, Xin Song, Shihao Xu, Liangguo Da, Dan Lin, Changlong Jiang
ABSTRACT

Organophosphate pesticides (OPs) are widely utilized in agricultural production, and the residues threaten public health and environmental safety due to their toxicity. Herein, a novel and simple DNA aptamer-based sensor has been fabricated for the rapid, visual, and quantitative detection of profenofos and isocarbophos. The proposed DNA aptamers with a G-quadruplex spatial structure could be recognized by SYBR Green I (SG-I), resulting in strong green fluorescence emitted by SG-I. The DNA aptamers exhibit a higher specific binding ability to target OP molecules through aromatic ring stacking, disrupting the interaction between SG-I and DNA aptamers to induce green fluorescence quenching. Meanwhile, the fluorescence wavelength of G-quadruplex fluorescence emission peaks changes, accompanied by an obvious fluorescence variation from green to blue. SG-I-modified aptasensor without any additive reference fluorescence units for use in multicolor fluorescence assay for selective monitoring of OPs was first developed. The developed aptasensor provides a favorable linear range from 0 to 200 nM, with a low detection limit of 2.48 and 3.01 nM for profenofos and isocarbophos, respectively. Moreover, it offers high selectivity and stability in real sample detection with high recoveries. Then, a self-designed portable smartphone sensing platform was successfully used for quantitative result outputs, demonstrating experience in designing a neotype sensing strategy for point-of-care pesticide monitoring.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.