This is a demo store. No orders will be fulfilled.
Trichloroethylene detoxification in low-permeability soil via electrokinetic-enhanced bioremediation technology: Long-term feasibility and spatial-temporal patterns
In situ remediation of low-permeability soils contaminated with trichloroethylene (TCE) is challenging due to limited mass transfer and low bioavailability in clay soils. The electrokinetic-enhanced bioremediation (EK-BIO) system offers a promising solution by combining electrokinetics with bioremediation to address these challenges. While previous studies have demonstrated microbial succession and TCE removal, the long-term performance of dechlorination and interactions between electrode reactions and anaerobic dechlorination remain unclear. This study constructed five one-dimensional columns, each operated for a different period (28, 42, 56, 84 and 138 days) to explore spatial and temporal dechlorination patterns. Continuous TCE degradation was achieved, with 46.52 % of TCE recovery. Prolonged electrokinetic operation accelerated the first-step dehalogenation (TCE to DCE). Although Dehalococcoides was widespread at 138 days (2.30–5.74 %), oxygen exposure led to irreversible damage, necessitating secondary inoculation. The presence of aerobic bacteria ( Comamonas and Pseudomonas ) suggested the formation of aerobic detoxification pathways in electrode chambers. Gene expression analysis ( tceA , vcrA and Dhc16S ) further confirmed the loss of 2nd and 3rd step dehalogenation (DCE to ethene) over time. These findings demonstrate that secondary inoculation and alternative aerobic pathways can sustain long-term biodegradation in the EK-BIO system. This study highlights the potential of the EK-BIO system for effective remediation of TCE-contaminated low-permeability soils, supporting its field application.