This is a demo store. No orders will be fulfilled.

Trace F-doped Co3O4 nanoneedles for enhanced acidic water oxidation activity via promoting OH coverage

GREEN CHEMISTRY [2024]
Genyan Hao, Tao Zhao, Qiang Fang, Yunzhen Jia, Dandan Li, Dazhong Zhong, Jinping Li, Qiang Zhao
ABSTRACT

Exploring Earth-abundant and efficient electrocatalysts to replace Ir and Ru for the acidic oxygen evolution reaction (OER) is essential to reduce the cost of clean hydrogen production. Here, we show that trace amounts of electronegative non-metallic element fluorine (F)-doped Co3O4 nanoneedles improve the activity and stability of Co3O4. The F-doped Co3O4 nanoneedles supported on carbon paper (F-Co3O4/CP) exhibit an overpotential of 350 mV at 10 mA cm−2 for the acidic OER. In addition, their performance remains consistent after continuous operation for 80 h. Detailed investigations reveal that introducing an anion promotes the enrichment of OH on the surface of Co3O4 and prevents acid corrosion, thereby enhancing the intrinsic OER activity and stability. Theoretical calculations further indicate that F doping can effectively improve electron transfer and optimize the energy barrier for the formation of *OOH intermediates, which significantly improves OER performance. This study provides guidance for designing efficient and stable non-noble metal acidic water oxidation catalysts.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.