This is a demo store. No orders will be fulfilled.

Tough physically crosslinked poly(vinyl alcohol)-based hydrogels loaded with collagen type I to promote bone regeneration in vitro and in vivo

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES [2024]
Changxin Xiang, Zehua Wang, Qing Zhang, Zijian Guo, Xiaona Li, Weiyi Chen, Xiaochun Wei, Pengcui Li
ABSTRACT

Poly(vinyl alcohol) (PVA) hydrogels exhibit great potential as ideal biomaterials for tissue engineering, owing to their non-toxicity, high water content, and strong biocompatibility. However, limited mechanical strength and low bioactivity have constrained their application in bone tissue engineering. In this study, we have developed a tough PVA-based hydrogel using a facile physical crosslinking method, comprising of PVA, tannic acid (TA), and hydroxyapatite (HA). Systematic experiments were conducted to examine the physicochemical properties of PVA/HA/TA hydrogels, including their compositions, microstructures, and mechanical and rheological properties. The results demonstrated that the PVA/HA/TA hydrogels possessed the porous microstructures and excellent mechanical properties. Furthermore, collagen type I (Col I) was used to further improve the biocompatibility and bioactivity of PVA/HA/TA hydrogels. In vitro experiments revealed that PVA/HA/TA/COL hydrogel could offer a suitable microenvironment for the growth of MC3T3-E1 cells and promote their osteogenic differentiation. Meanwhile, the PVA/HA/TA/COL hydrogel demonstrated the ability to promote bone regeneration and osteointegration in a rat femoral defect model. This study provides a potential strategy for the use of PVA-based hydrogels in bone tissue engineering.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.