This is a demo store. No orders will be fulfilled.
The introduction of nano zero-valent iron in constructed wetlands simultaneously enhanced the removal of perfluorooctanoic acid (PFOA) and nutrients
Constructed wetland (CW) serve as the final ecological barrier for hazardous materials entering the natural water environment. Due to the ecological toxicity and difficult bioutilization characteristics of perfluorooctanoic acid (PFOA) itself, CW technology faces great challenges in the field of PFOA remediation. In this study, nano zero-valent iron (nZVI) was introduced into CWs to explore the mechanism of the synergistic removal of PFOA and nutrients in nZVI-CW system. The results indicated that the addition of 10 mg/L nZVI improved the removal efficiency of CW for 1 and 10 mg/L PFOA, with an average removal rate increased by 3.53–8.70%. The transformation products in CW effluents were qualitatively detected using HPLC-Q-TOF-MS, suggesting that the degradation of PFOA may involve decarboxylation, hydrolysis, redox, elimination, substitution and intramolecular rearrangement processes. The presence of nZVI enhanced the average removal rates of NH 4 + -N, NO 3 − -N and TP by 2.78–18.4% in CWs. The increase in key substrate enzyme activity confirmed the stimulating effect of nZVI on microbial activity. The addition of nZVI facilitated the growth and enrichment of hydroautotrophic denitrifying bacteria, nitrat-dependent iron-oxidizing bacteria, and dissimilatory iron-reducing bacteria. Two types of dissimilatory iron-reducing bacteria ( Geobacter and Acinetobacter ) may be potential PFOA-degrading bacteria. Additionally, signaling pathways related to carbohydrate metabolism, energy metabolism, and xenobiotic degradation and metabolism exhibited higher abundance in the nZVI treated groups.