This is a demo store. No orders will be fulfilled.

Surface Mn-O3* complex-mediated nonradical electron transfer for boosting catalytic ozonation of organic pollutants

APPLIED CATALYSIS B-ENVIRONMENTAL [2024]
Tian Tian, Peixin Zhu, Chun He, Ya Xiong, Jingyun Fang, Shuanghong Tian
ABSTRACT

As initial and important reactive species, surface O 3 complexes are rarely investigated in catalytic ozonation, which might be one cause of dispute in mechanistic understanding. Herein, In-situ DRIFTS and premixing-standing experiments confirmed the generation of long-lived Mn-O 3 * complexes upon O 3 adsorption on surface Lewis acid sites of α-MnO 2 . In α-MnO 2 /O 3 system, the oxidation rate of various pollutants showed a good linear correlation with their redox potentials, as well as the energy gap between the pollutants and Mn-O 3 * complexes. Joint catalytic mechanism experiments and density functional theory calculations revealed that the oxidation of pollutants was boosted mainly because there was fast nonradical intermolecular electron transfer from the HOMO of pollutants to the LUMO of Mn-O 3 * complexes. This study illustrates the significance of surface Mn-O 3 * complex in catalytic ozonation and discloses an efficient nonradical catalytic ozonation process that is resistant to pH fluctuation and matrix interference.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.