This is a demo store. No orders will be fulfilled.

Stretchable and robust superhydrophobic fabrics

PROGRESS IN ORGANIC COATINGS [2025]
Manyi Gu, Mengyao He, Xinqing Wang, Chunyu Ding, Kunlin Chen, Yangyi Sun, Dongming Qi
ABSTRACT

Creating stretchable and robust superhydrophobic fabrics is curial for advanced dynamic protective materials, but it remains a significant challenge due to the mechanical deformation would damage surface structures required for superhydrophobicity. Here we present a strategy to devise s tretchable and r obust s uper h ydrophobic f abrics (SRSHFs) that exhibit exceptional liquid repellency (e. g. water, coffee, milk, et al), low contact angle hysteresis (<7°), outstanding mechanical abrasion resistance (up to 1000 cycles after self-healing), remarkable stretchability stability (up to 7000 cycles of 50 % stretching-releasing without superhydrophobicity loss after self-healing), and rapid self-healing capabilities (restoring functionality within 5 min at 80 °C heating). Our strategy is based on a robust “artificial fluorine-free raspberry-like particles (AFRNPs) + glue + stretchable fiber substrate” coating technique, integrated with a single-fiber-film-forming process, which makes use of hierarchical microscale hydrophobic fibers with surface-deposited nanoscale rough particles to achieve superhydrophobicity while maintain these properties under significant tensile deformation. This single-fiber-film-forming coating technique enables construction of densely packed AFRNPs on individual microscale fibers of a stretchable fabric substrate. The AFRNPs, featuring hydrosilylation-reactive vinyl (C=C) groups, act as chemical anchoring sites for poly(dimethylsiloxane) (PDMS) glue, and ensure robust adhesion and structural stability, thus enables the fabrics to retain superhydrophobicity under mechanical abrasion and repeated stretching-relaxing-recovery cycles. Our SRSHFs show significant potential for broad applications, such as wearable electronic devices, fabric dressings, and liquid motion manipulation.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.