This is a demo store. No orders will be fulfilled.
Sodium alginate/chitosan composite scaffold reinforced with biodegradable polyesters/gelatin nanofibers for cartilage tissue engineering
Cartilage repair remains a significant challenge in tissue engineering. The Sodium alginate/Chitosan hydrogel scaffold, fabricated from natural polymers, has the potential to promote tissue regeneration. However, its poor mechanical performance limits its application. Research has shown that integrating nanomaterials into three-dimensional network materials can significantly enhance mechanical properties, which is particularly important for osteochondral replacement scaffolds. In this study, biodegradable polylactic acid-glycolic acid copolymer/polycaprolactone/gelatin (PLGA/PCL/GEL) nanofibers were prepared via electrospinning and integrated as a reinforcing phase. This enhancement significantly improved the mechanical performance of the sodium alginate/chitosan hydrogel, achieving a maximum compressive modulus of 665 kPa and compressive stress of 342 kPa. Moreover, the inherent biocompatibility of the composite scaffold remained high. This work demonstrates the potential of nanofiber/hydrogel scaffolds, contributing to the development of safe and multifunctional materials for clinical application.