This is a demo store. No orders will be fulfilled.

Snowflake-Like Cu2O-Pt Nanocluster Mediated Fenton Photothermal and Chemodynamic for Antibiotic Wound Healing Therapy

Biomaterials Science [2025]
En Li, Qi Han, Ting Chen, Si Cheng, Jinghua Li
ABSTRACT

TheFenton reaction serves as the fundamental mechanism behind chemodynamic therapy (CDT), wherein highly reactive hydroxyl radicals (•OH) are produced to efficiently induce bacterial cell death. On the other hand, photothermal therapy (PTT) utilizes photosensitizers to absorb specific wavelengths of light, generating localized heat that disrupts bacterial cell membranes, leading to bactericidal effects. In this study, platinum nanoparticles (PtNPs) were successfully doped onto the surface of hexapodal cuprous oxide (HCu₂O), resulting in the synthesis of hexapodal snowflake-like Cu2O-Pt nanoparticles (HCPNLs). These HCPNLs synergistically combine the mechanisms of CDT and PTT, significantly enhancing antibacterial efficacy. In vitro antimicrobial experiments have demonstrated that HCPNLs exhibit strong antimicrobial activity against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli). Additionally, HCPNLs effectively disrupted biofilm formation and improved tissue penetration. In a murine model of mixed bacterial infection, HCPNLs showed excellent synergistic antimicrobial effects, significantly promoting wound healing with minimal toxicity. Overall, the unique properties of HCPNLs provide a novel option for non-resistant antimicrobial therapy in biomedical applications.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.