This is a demo store. No orders will be fulfilled.
Skin-Inspired Zero Carbon Heat-Moisture Management Based on Shape Memory Smart Fabric
Excessive energy consumption, especially space heating and cooling, is one of the major challenges facing mankind. Smart heat-moisture management textiles can effectively regulate heat-moisture comfort between the environment and skin, greatly reducing energy consumption; these results are in line with sustainable development goals. In this work, a skin-inspired adaptive heat-regulating fabric based on heat-responsive shape-memory ethylene vinyl acetate copolymer fibres and traditional cotton fabric is used. Furthermore, single-sided hydrophobic finishing is introduced to provide the fabric with unidirectional moisture transport. Owing to the shape memory effect, the smart fabric has an environment-adaptive and responsive dynamic structure in the form of a heat-induced gap opening and cool-induced gap closing. As a result, the heat conductivity of the smart textile can be switched from 0.086 to 0.089 W/m·K. Moreover, the air permeability and moisture evaporation can be regulated between 443.5 mm/s, 1761.81 g/(d·m 2 ) and 461.7 mm/s, 1963.8 g/(d·m 2 ), reversibly and repeatedly; the unidirectional moisture transport capacity with a unidirectional moisture index of 193.2 can also be regulated to synergistically improve the heat-moisture comfort, and the entire process results in zero carbon emission. Moreover, we demonstrate the application of the smart adaptive fabric in heat-moisture management fields, attaining a cooling effect of 4.35 °C and a breathability difference of 89.6 mm/s; these values correspond to more than 30% building cooling and heating energy savings, and these results are in line with the sustainable and zero-carbon trends. The shape memory adaptive heat-moisture management fabric will likely have broad prospects in smart thermoregulation textiles, wearable fields, electronic skin, outdoor, medical, military, and energy-saving fields. Graphical Abstract