This is a demo store. No orders will be fulfilled.
Revealing the Structure–Luminescence Relationship in Robust Sn(IV)-Based Metal Halides by Sb3+ Doping
Low-dimensional hybrid metal halides are an emerging class of materials with highly efficient photoluminescence (PL), but the problems of poor stability remain challenging. Sn(IV)-based metal halides show robust structure but exhibit poor PL properties, and the structure–luminescence relationship is elusive. Herein, two Sn(IV)-based metal halides (compounds 1 and 2) with the same constituent ((C6H16N2)SnCl6) but different crystal structures have been prepared, which however show poor PL properties at room temperature due to the absence of active ns2 electrons. To improve materials’ PL properties, Sb3+ with active 5s2 electrons was embedded into the lattice of Sn4+-based hosts. As a result, efficient emissions were achieved for Sb3+-doped compounds 1 and 2 with a maximum PL efficiency of 14.28 and 62%, respectively. Experimental and calculation results reveal that the smaller distorted lattice structure of the host could result in the blueshift of the emission from Sb3+. Thus, a tunable color from red to orange was realized. Benefiting from the broadband efficient emission from Sb3+-doped compound 2, an efficient white light-emitting diode with a high color rendering index of up to 92.3 was fabricated to demonstrate its lighting application potential. This work promotes the understanding of the influence of robust Sn(IV)-based host lattice on the PL properties of Sb3+, advancing the development of environmentally friendly, low-cost, and high-efficiency Sn(IV)-based metal halides.