This is a demo store. No orders will be fulfilled.

Remarkable ionic thermoelectric performance of high-entropy gel thermocell near room temperature

Energy & Environmental Science [2025]
Lijuan Yang, Jiawei Chen, Cheng-Gong Han, Yongbin Zhu, Chunxia Xie, Zhenbang Liu, Haoyu Wang, Yu Bao, Dongxue Han, Li Niu
ABSTRACT

Gel thermocell, as a green and clean energy conversion technology, has a high ionic thermopower, and it is capable of functioning for self-powered sensors near room temperature. However, ionic thermoelectric performance is currently limited and needs to be improved to meet the practical requirements. To date, it has been a major challenge to significantly improve performance, including ionic thermopower, output power density, and energy harvesting. Herein, we propose a “high-entropy” concept by controlling the gel compositions to achieve remarkable ionic thermoelectric performance. The high-entropy results from multi-ion coupling, especially for anions, to improve redox reaction entropy change, exchange current density, and ionic conductivity, pushing the performance to high levels. The fabricated high-entropy gel thermocell showed an ionic thermopower of 31 mV K−1, a normalized maximum output power density of 11.4 mW m−2 K−2, and a one-hour continuous discharge energy density of 4.3 J m−2 K−2. Moreover, a device assembled by twelve thermocells delivered a maximum output power density of 2.0 mW m−2 K−2. Thus, the strategy proposed in this work provides guidelines for designing other high-performance gels.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.