This is a demo store. No orders will be fulfilled.

PVA-assisted spray deposited porous Li4Ti5O12 thin film as high-rate and long-cycle anode for lithium-ion thin-film batteries

JOURNAL OF COLLOID AND INTERFACE SCIENCE [2024]
Tu Lan, Jinxia Zhou, Tianzheng Xie, Kai Huang, Suichang Ong, Huili Yang, Heng Jiang, Yibo Zeng, Han Zhang, Xuanrui Guo, Linyi Wan, Ying Zhang, Hang Guo
ABSTRACT

Spinel Li 4 Ti 5 O 12 (LTO), a zero-strain material, is a promising anode material for solid-state thin-film lithium-ion batteries (TFB). However, the preparation of high-performance Li 4 Ti 5 O 12 thin-film electrodes through facile methods remains a significant challenge. Herein, we present a novel approach to prepare a binder- and conductor-free porous Li 4 Ti 5 O 12 (P-LTO) thin-film. This approach polyvinyl alcohol (PVA)-assisted spray deposition and does not require the use of complex or expensive methods. Adding PVA to the precursor solution effectively prevents thin-film cracking during high-temperature annealing, enhances adhesion, and forms a highly interconnected porous structure . This unique structure shortens the lithium-ion diffusion pathways and facilitates electron transport . Therefore, P-LTO thin film electrodes demonstrate exceptional rate capacity of 104.1 mAh/g at a current density of 100C. In addition, the electrodes exhibit ultra-long cycle stability, retaining 80.9 % capacity after 10,000 cycles at 10C. This work offers a novel approach for the preparation of high-performance thin-film electrodes for TFBs.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.