This is a demo store. No orders will be fulfilled.

Prussian Blue/Polydopamine-Decorated Halloysite Nanotubes for Effective Bacterial Eradication via Photothermal-Enhanced Chemodynamic Therapy

ACS Applied Nano Materials [2024]
Jie Chen, Qinqin Zhang, Chenyang Qi, Yipin Zhang, Fuqiang Shi, Jing Tu
ABSTRACT

Bacterial infectious diseases seriously threaten global public health. The inappropriate use of antibiotics promoted the emergence and widespread of drug-resistant bacteria; thus, nanomaterial-based antibacterial agents are considered promising alternatives to combat bacterial infections. Herein, a near-infrared (NIR) light and hydrogen peroxide (H2O2) dually triggered halloysite nanotube (HNT)-based nanoplatform (HNTs@PDA/PB) as a broad-spectrum antibacterial agent was fabricated via a facile two-step strategy. Specifically, as natural clay materials, HNTs were first coated with a versatile layer of polydopamine (PDA). Then, the catechol groups on the PDA surface served as a chelating and reducing agent, facilitating the in situ growth of Prussian blue (PB) nanoparticles. The as-prepared HNTs@PDA/PB exhibited strong absorption in the NIR region and peroxidase-like activity, which suggested that it can act as a photothermal and Fenton dual-modal agent. Under NIR irradiation and exogenous H2O2, HNTs@PDA/PB exhibited excellent bactericidal activity via photothermal-enhanced chemodynamic therapy against multiple pathogenic bacteria, eliminating 68.0 ± 0.4% of the Staphylococcus aureus biofilm and 61.6 ± 0.3% of the methicillin-resistant S. aureus (MRSA) biofilm. In vivo studies further demonstrated that HNTs@PDA/PB could achieve efficient bacterial eradication and accelerate wound healing. Overall, this versatile HNT-based nanoplatform can serve as a promising therapeutic candidate to fight against bacterial infectious diseases.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.