This is a demo store. No orders will be fulfilled.
Preparation of amphiphilic polyquaternium nanofiber films with antibacterial activity via environmentally friendly microfluidic-blow-spinning for green food packaging applications
Green food packaging plays an important role in environmental protection and sustainable development. Therefore, it is advisable to employ low-energy consumption manufacturing techniques, select environmentally friendly materials, and focus on cost-effectiveness with high production yields during the production process. In this study, an amphiphilic polyquaternium called PBzCl was proposed and synthesized by free radical polymerization of cost-efficient quaternary ammonium salts and methacrylate monomers. Then, biodegradable PCL and PVP were used to rapidly prepare the PBzCl@PCL/PVP nanofiber films via environmentally friendly microfluidic-blow-spinning (MBS). The best antibacterial effect was observed at a PBzCl loading concentration of 13.5%, and the PBzCl@PCL/PVP nanofiber films had 91% and 100% antibacterial rates against Escherichia coli and Staphylococcus aureus, respectively. Besides, the loading of PBzCl improved the water stability of the PCL/PVP nanofiber films, and the films also showed excellent biocompatibility. Overall, PBzCl@PCL/PVP nanofibre films have promising food packaging potential.