This is a demo store. No orders will be fulfilled.

Polymer hetero-electrolyte enabled solid-state 2.4-V Zn/Li hybrid batteries

Nature Communications [2024]
Chen Ze, Wang Tairan, Wu Zhuoxi, Hou Yue, Chen Ao, Wang Yanbo, Huang Zhaodong, Schmidt Oliver G., Zhu Minshen, Fan Jun, Zhi Chunyi
ABSTRACT

The high redox potential of Zn 0/2+ leads to low voltage of Zn batteries and therefore low energy density, plaguing deployment of Zn batteries in many energy-demanding applications. Though employing high-voltage cathode like spinel LiNi 0.5 Mn 1.5 O 4 can increase the voltages of Zn batteries, Zn 2+ ions will be immobilized in LiNi 0.5 Mn 1.5 O 4 once intercalated, resulting in irreversibility. Here, we design a polymer hetero-electrolyte consisting of an anode layer with Zn 2+ ions as charge carriers and a cathode layer that blocks the Zn 2+ ion shuttle, which allows separated Zn and Li reversibility. As such, the Zn ‖ LNMO cell exhibits up to 2.4 V discharge voltage and 450 stable cycles with high reversible capacity, which are also attained in a scale-up pouch cell. The pouch cell shows a low self-discharge after resting for 28 days. The designed electrolyte paves the way to develop high-voltage Zn batteries based on reversible lithiated cathodes.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.