This is a demo store. No orders will be fulfilled.
Performance Study of Graphite Oxide Polythiophene Composites for Microbial Fuel Cell
Microbial fuel cell (MFC) is a bioelectrochemical device for biomass power generation, and the anode material determines the performance of the MFC. In this study, a novel anode material, which is a combination of graphite oxide/polythiophene (GO/Pth), was prepared on a carbon felt (CF) substrate and exhibited excellent capacitive performance. The MFC equipped with the CF/GO/Pth anode achieved a significant increase in power density, reaching a maximum value of 2.9 W/m3, which is a 3.32-fold increase in power density compared to that of the CF anode. Meanwhile, the CF/GO/Pth anode stored charge Qtvalue was as high as 11,258.68 C/m2, which was 4.13 times higher than that of the CF anode (2727.66 C/m2). High-throughput analysis showed that the percentage of charge-producing bacteria on the surface of the CF/GO/Pth anode was more than 90%, which was significantly higher than that of the charge-producing bacteria attached to the CF anode. This further confirms the significant enhancement of MFC performance by materials such as GO and Pth coated on the CF surface. In this study, CF/GO/Pth anode materials were prepared to successfully enhance the power output and charge storage capacity of MFC, and they also showed broad application prospects in the degradation of polluted waste liquids.