This is a demo store. No orders will be fulfilled.

Overcoming Gas Mass Transfer Limitations Using Gas-Conducting Electrodes for Efficient Nitrogen Reduction

ACS Nano [2024]
Lu Li, Yuliang Li, Ke Li, Wentao Zou, Honghao Li, Yan Li, Linyang Li, Qiuya Zhang, Chunyu Zhang, Xiaofang Zhang, Dongliang Tian, Lei Jiang
ABSTRACT

Electrocatalytic nitrogen reduction reaction (NRR) is a very attractive strategy for ammonia synthesis due to its energy savings and sustainability. However, the ammonia yield and Faraday efficiency of electrocatalytic nitrogen reduction have been challenges due to low nitrogen solubility and competitive hydrogen evolution reaction (HER) in electrolyte solution. Herein, inspired by the asymmetric wetting behavior, i.e., superhydrophobicity/hydrophilicity, of floating lotus leaves, we demonstrated a gas-conduction electrode with asymmetric gas wetting behavior on the opposite surface, i.e., Janus-Ni/MoO2@NF, for efficient nitrogen reduction. It can provide an abundant three-phase interface (TPI) at interfaces of Janus-Ni/MoO2@NF in electrolyte solution to enhance the contact among N2, electrolyte, and electrode. Ascribed to this advantage, the hydrophobic side of the Janus electrode not only can repel water molecules to suppress the HER process but also can increase the concentration of N2 on the interface microenvironment. Consequently, the well-designed gas-conducting electrode breaks gas mass transfer limitation. Furthermore, Janus-Ni/MoO2@NF delivers a record-high NH3 yield rate of 5.865 μg·h–1·cm–2 and a Faradaic efficiency of 36.14% at an extremely low potential of 0 V vs RHE in 0.1 M Na2SO4 under ambient conditions, which are 22 and 18 times higher than those of the conventional electrode, respectively. Therefore, the gas-conducting electrodes can dramatically improve the activity and selectivity in electrocatalytic NRR. Additionally, the unique interface design provides inspiration for other sustainable electrochemical reactions involving gas electrocatalytic correlation.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.