This is a demo store. No orders will be fulfilled.

Novel Peptides from Sturgeon Ovarian Protein Hydrolysates Prevent Oxidative Stress-Induced Dysfunction in Osteoblast Cells: Purification, Identification, and Characterization

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY [2024]
Ruichang Gao, Lingling Zhu, Wei Zhang, Wengang Jin, Fan Bai, Peng Xu, Jinlin Wang, Quancai Sun, Zitao Guo, Li Yuan
ABSTRACT

This study aimed to explore antioxidant peptides derived from sturgeon (Acipenser schrenckii) ovaries that exhibit antiosteoporotic effects in oxidative-induced MC3T3-E1 cells. The F3–15 component obtained from sturgeon ovarian protein hydrolysates (SOPHs) via gel filtration and RP-HPLC significantly increased the cell survival rate (from 49.38 ± 2.88 to 76.26 ± 2.09%). Two putative antioxidant-acting peptides, FDWDRL (FL6) and FEGPPFKF (FF8), were screened from the F3–15 faction via liquid chromatography–tandem mass spectrometry (LC–MS/MS) and through prediction by computer simulations. Molecular docking results indicated that the possible antioxidant mechanisms of FL6 and FF8 involved blocking the active site of human myeloperoxidase (hMPO). The in vitro tests showed that FL6 and FF8 were equally adept at reducing intracellular ROS levels, increasing the activity of antioxidant enzymes, and protecting cells from oxidative injuries by inhibiting the mitogen-activated protein kinase (MAPK) pathway and activating the phosphoinositide-3 kinase (PI3K)/protein kinase B (AKT)/glycogen synthase kinase-3β (GSK-3β) signaling pathway. Moreover, both peptides could increase differentiation and mineralization abilities in oxidatively damaged MC3T3-E1 cells. Furthermore, FF8 exhibited high resistance to pepsin and trypsin, showcasing potential for practical applications.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.