This is a demo store. No orders will be fulfilled.
MOF-Derived Bi12O17Cl2 Nanoflakes for the Photocatalytic Degradation of Bisphenol A and Tetracycline Hydrochloride under Visible Light
Photocatalytic degradation of pollutants is an attractive method to handle environmental pollution issues. Here, Bi12O17Cl2 photocatalysts were synthesized facilely by hydrolyzed bismuth-based metal organic framework (Bi-BTC) precursors, and their thickness was adjusted by controlling the hydrolysis time. Under visible light irradiation, MOF-derived Bi12O17Cl2 nanoflakes fabricated by this strategy exhibited higher photocatalytic activity in the degradation of bisphenol A (BPA) and tetracycline hydrochloride (TCH) than the conventional Bi12O17Cl2 materials prepared by hydrothermal and chemical precipitation, which could reach up to 94.3 and 92.2% within 60 min under optimal conditions. The inhibition experiments and electron spin resonance (ESR) confirmed that superoxide radicals (·O2–) were the main active species for photodegradation activity. Furthermore, the possible degradation pathways of BPA and TCH were proposed according to the detected intermediates by LC-MS. At the same time, this method has been extended to synthesize Bi5O7I and Bi12O17Br2 materials, providing a strategy for the fabrication of bismuth-rich bismuth oxyhalide materials in environment treatment.