This is a demo store. No orders will be fulfilled.
Metabolic Disturbances in a Mouse Model of MPTP/Probenecid-Induced Parkinson’s Disease: Evaluation Using Liquid Chromatography-Mass Spectrometry
Purpose Parkinson’s disease (PD) is a common neurodegenerative disease that severely affects patients’ daily lives and places a significant burden on the global economy. There are currently no specific biomarkers for distinguishing between the different stages of PD.Methods We divided 78 mice into six equal groups, including five model PD groups (W1–W5; based on the PD stage induced by length of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/propofol induction time) and a control group. Then, we used metabolomics technology to detect the serum small-molecule metabolites present in each group. Ultimately, we screened for potential biomarkers using the variable importance in the projection of the orthogonal partial least squares discriminant analysis and the coefficient value of LASSO ordinal logistic regression.Results We identified 12 potential biomarkers, including dehydroepiandrosterone sulfate, pipecolic acid, N-acetylleucine, 2-aminoadipic acid, L-tyrosine, uric acid, and 5-hydroxyindoleacetaldehyde. Pathway analysis revealed their involvement in amino acid metabolism, caffeine metabolism, steroid hormone biosynthesis, and purine metabolism. Additionally, the receiver operating characteristic curve indicated that a biomarker panel comprising the 12 biomarkers could differentiate between the different PD stages.Conclusion Different PD stages are characterized by different metabolites. The biomarkers identified in this study are helpful to understand the PD process.