This is a demo store. No orders will be fulfilled.

Manipulating the coordination dice: Alkali metals directed synthesis of Co-N-C catalysts with CoN4 sites

Science Advances [2025]
Mengxue Huang, Xuya Zhu, Wenwen Shi, Qianqian Qin, Jie Yang, Shanshan Liu, Lifang Chen, Ruimin Ding, Lin Gan, Xi Yin
ABSTRACT

Nitrogen-coordinated metal sites (MNx) in metal- and nitrogen-codoped carbon (M-N-C) catalysts offer promising electrocatalytic activity, but selective synthetic design of MNx sites with specific coordination environments remains challenging. Here, we manipulate the formation statistics of MNx sites by using sacrifice alkali metals (AM = Li, Na, and K) to form metal vacancy-Nx carbon (AM-MVNx-C) templates, which are used to direct the solution-phase formation of CoN4 sites in Co-N-C catalysts. We build a probability weight function based on the embedding energy of M in MNx sites as the descriptor for MNx formation statistics, and we predict that the alkali metals are prone to induce the formation of MVN4 sites. By coordinating Co2+ ions with AM-MVNx-C templates, we synthesize Co-N-C with CoN4 sites, demonstrating remarkable oxygen reduction activity in anion exchange membrane fuel cells. These results highlight the statistical thermodynamics of MNx formation and open up the possibility for the rational design of complex M-N-C electrocatalysts with well-defined MNx sites.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.