This is a demo store. No orders will be fulfilled.
Manipulating electron redistribution in platinum for enhanced alkaline water splitting kinetics
The potential of hydrogen production via water splitting technology makes it urgent to develop low-cost and highly active bifunctional catalysts for hydrogen and oxygen evolution reactions (HER/OER). In this study, a low platinum (Pt) bimetallic phosphide heterostructure (Pt-NiFe-P/NF), derived from three-dimensional NiFe metal–organic framework (NiFe-MOF) nanorods on nickel foam (NF), was developed using a two-step hydrothermal and phosphorization process. The nickel-iron phosphide nanorod array heterostructure boasts a large surface area with numerous active sites, which enhances charge and substance transfer. The integration of metallic Pt with NiFe-P heterostructures subtly adjusts the electronic redistribution between them, thereby improving the kinetics of water splitting. Consequently, the Pt-NiFe-P/NF catalyst demonstrated exceptional HER and OER performance in a 1 M KOH solution, with overpotentials of 97 and 266 mV at 100 mA cm−2, respectively. Remarkably, an electrolyzer utilizing this catalyst requires just a 1.65 V potential to achieve a current density of 100 mA cm−2, exceeding the capabilities of conventional Pt/C||RuO2 systems, which require 2.10 V and outperforming many advanced electrochemical water splitting catalysts currently in use.