This is a demo store. No orders will be fulfilled.

Layer-Point Structure of Si3N4–NH2@GO for Improving Corrosion and Wear Resistance of Waterborne Epoxy Coating

LANGMUIR [2024]
Jing Zhang, Changhua Li, Xiaofeng Zhang, Hao Chen, Rui Gou, Chao Zhang, Dan Sun, Yi He
ABSTRACT

The use of graphene-based materials as anticorrosion coatings to protect metals is always a topic of discussion. In this work, silicon nitride (Si3N4) was aminated to improve its water dispersibility. Then it is attached to the graphene oxide (GO) surface to improve compatibility with epoxy (EP) resin as well as conductivity. The results of Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and zeta potentials test analyses indicated that Si3N4–NH2@GO with a layer-point structure has been successfully prepared. The corrosion resistance of the composite coatings was characterized by electrochemical impedance spectroscopy (EIS) and polarization curve analysis, and the wear resistance of the composite coatings was tested by friction and wear tests. The results showed that 1.0% Si3N4–NH2@GO has excellent corrosion and wear resistance. The use of Si3N4–NH2@GO layer point structures in this study broadens the way for GO applications.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.