This is a demo store. No orders will be fulfilled.
In-Situ Catalytic Membrane Technology for Antifouling and Sustainable Landfill Leachate Management
Landfill leachate contains high concentrations of hazardous pollutants that require effective treatment before discharge. Membrane distillation (MD) has emerged as a promising approach for leachate treatment, but membrane fouling remains a major challenge for its practical application. This study introduces an innovative in-situ catalytic MD membrane to improve antifouling performance. The MnO₂-doped polyvinylidene fluoride (M-PVDF) membrane was prepared via electrospinning, incorporating an optimized amount of MnO₂ and fluoroalkyl modifier. The M-PVDF membrane demonstrated excellent retention of landfill leachate pollutants across all test cycles, achieving retention rates above 99.23% for non-ammonia foulants. No membrane wetting was observed in M-PVDF during the cyclic tests, whereas conventional PVDF membranes exhibited wetting in the third cycle. The fouled M-PVDF membrane was effectively restored after cleaning with H₂O₂, regaining its original flux and demonstrating robust self-cleaning capabilities. This performance is attributed to the synergistic effects of micro-nano bubbles and MnO₂-catalyzed H₂O₂ free radicals. The proposed in-situ catalytic self-cleaning strategy significantly enhances the antifouling properties of MD, providing a sustainable solution for high-salinity wastewater treatment.