This is a demo store. No orders will be fulfilled.

Inorganic Cu2ZnSnS4 hole transport layer for perovskite light-emitting diodes

Inorganic Chemistry Frontiers [2024]
Lunyao Pan, Wen Li, Xiankan Zeng, Maolin Mu, Qungui Wang, Yongjian Chen, Chenglong Li, Shiyu Yang, Linzhu Dai, Li Tao, Weiqing Yang
ABSTRACT

Inorganic Cu2ZnSnS4 (CZTS) has garnered significant attention in the field of solar cells owing to its high hole mobility, suitable optical bandgap, cost-effective and earth-abundant elemental constituents. In particular, the deeper highest occupied molecular orbital (HOMO) of CZTS makes it an alternative for the traditional organic hole transport layer (HTL) material poly(3,4-ethyllenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), which can suppress acidic interface and hygroscopic problem in perovskite light-emitting diodes (PeLEDs). Herein, we demonstrate CZTS as a novel inorganic HTL for green FAPbBr3 PeLEDs, achieving a peak external quantum efficiency (EQE) of 7.59% and a maximum luminance of 27 000 cd m−2 (emitting at 529 nm). The fluorescence properties of the perovskite films and interfacial behaviors of CZTS/FAPbBr3 were investigated through surface state regulation of CZTS HTL. High hole mobility (0–30 cm2 V−1 s−1) of CZTS HTL and low hole injection barrier (∼0.13 eV) between CZTS and perovskite endow the CZTS-based PeLEDs with enhanced hole transport capability and suppressed interfacial carrier accumulation. In addition, an attractive cost-effectiveness advantage of about $0.24 per g synthesizing CZTS makes it a promising competitor to mainstream organic HTL materials such as PEDOT:PSS (∼$1.3 per g). An in-depth understanding of this novel CZTS HTL makes an essential step forward for the commercialization of PeLEDs.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.