This is a demo store. No orders will be fulfilled.

In situ reprogramming of tumor-associated macrophages enhances cancer immunotherapy

Nano Today [2024]
Yanjie Han, Haifeng Lu, Zikuan Gu, Peixin Guan, Zhen Liu
ABSTRACT

In situ reprogramming of tumor associated macrophages (TAMs) to resurge their phagocytic ability holds great potential in cancer treatment. However, most of currently existing TAMs-reshaping approaches fail to effectively reprogram TAMs due to low efficiency, poor specificity, and potential immune side effects. Herein, we report a strategy called molecularly imprinted lysosomal nanodegrader (MILND) for resurging the phagocytosis of macrophages and reversing the "don't eat me" CD47-SIRPα signal via degrading SIRPα in lysosomes. The MILND, which was rationally engineered by controllable molecular imprinting using the N-terminal epitope of SIRPα as template, could specifically bind SIPRα on TAMs. Upon being engulfed by TAMs via endocytosis, the MILND-SIRPα complex was transferred to lysosomes for degradation. The degradation of SIRPα induced a cascade reaction of the downstream PI3K signaling pathway to resurging the phagocytic and recognition capability of TAMs towards cancer cells. Ultimately, MILND resulted in a subsequent series of anti-tumor effects. Benefiting from this, MILND effectively sensitized the immune microenvironment and amplified CD8+ T cell responses, leading to substantial tumor growth inhibition in tumor-bearing mouse model. Thus, this work provides an efficient and versatile immunomodulatory strategy for enhanced antitumor immunotherapy.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.