This is a demo store. No orders will be fulfilled.

Igniting tumour microenvironment in triple-negative breast cancer using a mannose/hyaluronic acid dual-coated Ganoderma polysaccharide-superparamagnetic iron oxide nanocomplex for combinational therapies

JOURNAL OF DRUG TARGETING [2024]
Shaofei Yuan, Linjia Zhu, Yi Luo, Xiaoqiang Chen, Haibo Jing, Jiaqi Wang, Xiangyu Su, Meizhen Liang, Zhixiang Zhuang
ABSTRACT

Eliciting tumour microenvironment (TME) activation in triple-negative breast cancer (TNBC) is crucial for effective anti-tumour therapies. The aim of this study is to employ pharmaceutical approaches to precisely deliver Ganoderma polysaccharide (GPS) to tumour sites, thereby enhancing TME activation. We first established a direct link between the accumulation of GPS within tumours and its efficacy in the TME activation. Building upon this insight, we then engineered a mannose/hyaluronic acid dual-coated GPS-loaded superparamagnetic iron oxide nanocomplex (Man/HA/GPS-SPIONs) with a particle size of 33.8 ± 1.6 nm and a zeta potential of −22.4 ± 3.5 mV, capable of precise tumour accumulation through magnet-assisted targeting and internalisation by tumour-associated macrophages (TAMs) and tumour cells, facilitated by dual ligand modification. In vitro, Man/HA/GPS-SPIONs effectively induced M1 polarisation of macrophages (CD86+ cells: 38.6 ± 2.8%), curbed 4T1 cell proliferation (viability: 47.3 ± 2.9%) and heightened Th1 cytokine release. Significantly, in vivo, Man/HA/GPS-SPIONs notably suppressed tumour growth (tumour index: 0.048 ± 0.005), fostered M1 polarisation of TAMs (CD45+F4/80+CD86+ cells: 26.1 ± 7.2%), consequently bolstering intratumoural T cytotoxic cells. This enhancement was intricately tied to the efficient co-delivery of GPS and iron ions to the tumours, made possible by the Man/HA/GPS-SPIONs delivery system. The synergistic effects with paclitaxel (PTX, inhibition rate: 61.2 ± 4.3%) and PD-1 inhibitors (inhibition rate: 69.8 ± 7.6%) underscored the translational potential of this approach. By harnessing a well-conceived iron-based drug delivery strategy, this study amplifies the tumour immune modulatory potential of natural polysaccharides, offering insightful guidance for interventions in the TME and synergistic therapies.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.