This is a demo store. No orders will be fulfilled.
Hollow CoP-FeP cubes decorating carbon nanotubes heterostructural electrocatalyst for enhancing the bidirectional conversion of polysulfides in advanced lithium-sulfur batteries
The sluggish redox reaction kinetics and “shuttle effect” of lithium polysulfides (LPSs) impede the advancement of high-performance lithium-sulfur batteries (LSBs). Transition metal phosphides exhibit distinctive polarity, metallic properties, and tunable electron configuration , thereby demonstrating enhanced adsorption and electrocatalytic capabilities towards LPSs. Consequently, they are regarded as exceptional sulfur hosts for LSBs. Moreover, the introduction of a heterogeneous structure can enhance reaction kinetics and expedite the transport of electrons/ions. In this study, a composite of hollow CoP-FeP cubes with heterostructure modified carbon nanotube (CoFeP-CNTs) was fabricated and utilized as sulfur host in advanced LSBs. The presence of carbon nanotubes (CNTs) facilitates enhanced electron and Li + transport. Meanwhile, the active sites within the heterogeneous interface of CoP-FeP suppress the “shuttle effect” and enhance the conversion kinetics of LPSs. Therefore, the CoFeP-CNTs/S electrode exhibited exceptional cycling stability and demonstrated a capacity attenuation of merely 0.051 % per cycle over 600 cycles at 1C. This study presents a highly effective tactic for synthesizing dual-acting transition metal phosphides with heterostructure, which will play a pivotal role in advancing the development of efficient LSBs.