This is a demo store. No orders will be fulfilled.
High-Performance CsPbI3 Quantum Dot Photodetector with a Vertical Structure Based on the Frenkel–Poole Emission Effect
The selection of photoactive materials and the design of device structures are critical to the photoelectronic performance of photodetectors. This study reports on a vertically structured photodetector device with rapid, stable, and efficient photoelectric performance across the UV–visible broadband range based on the Si++/SiO2/Au/single-layer graphene/CsPbI3 quantum dots (QDs) configuration. In this specific device structure, a relatively high conductivity Si++/SiO2 wafer was used as the substrate, a CsPbI3 QD film with high light absorption was used as the photoactive layer, and a monolayer graphene with high conductivity was inserted between the substrate and the CsPbI3 QD film to form a heterojunction with the QD film. Based on the Frenkel–Poole emission effect arising from the high trap state density within the SiO2 layer, the device exhibited excellent photoelectric performances. Especially at a wavelength of 365 nm, a photocurrent responsivity of 2319 A/W, a specific detectivity of 1.15 × 1014 Jones, an external quantum efficiency of 7883%, and an on/off time of 39/36 ms at a Si++ terminal voltage of −80 V and an optical power density of 84.03 nW/cm2 can be achieved.