This is a demo store. No orders will be fulfilled.

Highly efficient flame retardancy and fire spread behavior of rigid polyurethane foams with extremely low content of flame retardant

POLYMER DEGRADATION AND STABILITY [2024]
Liwen Zheng, Jing Zhan, Jiahui Wang, Zhirong Xu, Xiaowei Mu
ABSTRACT

In recent years, flame-retardant rigid polyurethane foam (RPUF) has once again captured the scholars’ attention due to the growing the growing demands in the field of building energy efficiency. However, the inherent flammability of RPUF is high and the complexities of its flame-retardant mechanisms remain inadequately understood. In this study, a modified biomass material, amino starch phosphate ester was successfully synthesized which was then combined with expandable graphite (EG) and incorporated into RPUF. The research delved into the optimal ratio and minimal flame-retardant additive required to achieve the stringent UL-94 V-0 rating, while also thoroughly investigating the flame retardancy and thermal properties of the composite system. The findings revealed that with just 6 wt.% of flame retardants, the RPUF achieved the UL-94 V-0 rating, with a 41.1 % reduction in peak heat release rate (pHRR) and a 23.7 % decrease in total heat release (THR). Additionally, it diminishes the flame's size and width, leading to quicker extinction, while also lowering the internal combustion temperature of the polyurethane, thereby delaying both preheating and combustion times. The synergistic interaction between amino starch phosphate ester and EG during combustion results in the formation of a dense, continuous char layer, effectively inhibiting the pyrolysis and combustion of RPUF. This study provides a theoretical foundation for the development of efficient flame-retardant systems for RPUF.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.