This is a demo store. No orders will be fulfilled.
High efficiency electricity and gas cogeneration through direct carbon solid oxide fuel cell with cotton stalk biochar
For the first time, biochar derived from a renewable resource, cotton stalk, is used as the feedstock of direct carbon solid oxides fuel cells (DC-SOFCs) for electricity and gas cogeneration. It turns out that the cotton stalk biochar has plenty of naturally grown K and Ca, which are active catalysts for the reverse Boudouard reaction in DC-SOFCs. This natural advantage of the cotton stalk biochar enables an extremely high power density of an anode-supported DC-SOFC at 850 °C, 0.9 W cm −2 , which is the highest among those of the reported DC-SOFCs. Meanwhile, high concentration of CO gas, which is an important feedstock for chemical industry, is obtained from the DC-SOFCs. The energy conversion efficiency of the electricity-gas cogeneration of DC-SOFCs reaches over 70%. A novel method, using compressed char, is proposed and carried out for continuous supply of cotton stalk char to a DC-SOFC. The present work has demonstrated the feasibility and advantages of cogenerating electricity and gas through DC-SOFCs with biochar derived from cotton stalk as the feedstock.