This is a demo store. No orders will be fulfilled.
Facile construction of a stable core-shell spherically magnetic polyimide covalent organic framework for efficient extraction of phenylurea herbicides
Efficient enrichment is crucial for the highly sensitive monitoring of phenylurea herbicides (PUHs) in various environmental waters. In this work, a stable core-shell spherically magnetic polyimide covalent organic framework (COF) was synthesized via a simple template-mediated precipitation polymerization method under mild conditions using tri(4-aminophenyl)amine (TAPA) and 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA) as the building units (denoted as Fe 3 O 4 @TAPA-BPDA). The Fe 3 O 4 @TAPA-BPDA exhibits remarkable adsorption performance for PUHs with an optimized adsorption time of only 10 min. The adsorption of PUHs by Fe 3 O 4 @TAPA-BPDA followed the pseudo-second-order kinetic model and the Langmuir model. Furthermore, hydrogen bonding , halogen bonding, hydrophobic interaction, electro donor-acceptor interaction and π-π interactions are identified as the dominant mechanisms contributing to excellent adsorption performance. It was demonstrated that halogen bonds play an important role in the adsorption of substances containing chlorine atoms . The Fe 3 O 4 @TAPA-BPDA is easy to operate and highly regenerable. A simple magnetic solid-phase extraction (MSPE) method based on the Fe 3 O 4 @TAPA-BPDA was then developed for the rapid extraction of five PUHs in real samples, coupled with high-performance liquid chromatography (HPLC) determination. The analytical method developed has a linear range of 0.5–50 ng/mL, and the limit of detection (LOD) ranges from 0.06 to 0.10 ng/mL. The method exhibits good accuracy with recoveries ranged from 74.5 % to 111.4 %. The analytical method was successfully applied to the highly sensitive detection of PUHs in environmental water samples, which highlighting the potential application of the Fe 3 O 4 @TAPA-BPDA in the sample pretreatment.