This is a demo store. No orders will be fulfilled.

Fabrication of p–n Heterostructured Photocatalysts with Triazine-Based Covalent Organic Framework and CuInS2 for High-Efficiency CO2 Reduction

ACS Applied Materials & Interfaces [2024]
Shuqing Chang, Yan Feng, Yuncai Zhao, Yanghe Fu, Huilin Jia, Yijing Gao, Fumin Zhang, Rui Ma, Xinqing Lu, Maohong Fan, Weidong Zhu
ABSTRACT

The application of covalent organic frameworks (COFs) for the photocatalytic reduction of CO2 is mostly limited by severe charge recombination and low sunlight utilization. Herein, a triazine-based COF with an electron-rich and large π-conjugated system (TCOF) was employed as a building block and integrated with CuInS2 (CIS) to construct a noble-metal-free and high-efficiency photocatalyst for CO2 reduction. The in situ growth of CIS nanosheets on TCOF creates a p–n heterojunction, named CIS@TCOF. Compared with TCOF, the CIS@TCOF heterostructure exhibits a dramatically boosted photocatalytic performance in the reduction of CO2. The produced HCOOH yield over 10 wt % CIS@TCOF can be up to 171.2 μmol g–1 h–1 under visible light irradiation with good reproducibility, which is about 3 times as high as that over TCOF. Further in-depth studies indicate that the introduction of CIS not only enhances the visible light utilization but also restrains the recombination of photogenerated electron–hole pairs efficiently and facilitates the photoinduced charge transfer via the p–n heterojunction system due to the unique structural and compositional features. This research shows the great potential of COFs as efficient photocatalytic carbon fixation materials and provides a versatile route to construct semiconductor-COF heterostructures for photocatalysis.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.