This is a demo store. No orders will be fulfilled.
Fabrication of functional interface on magnetic beads via various amino acids and their application in chemiluminescent immunoassay as carrier
Magnetic polymer microspheres with superparamagnetism, high specificity, and monodispersity play a crucial role in the field of in vitro diagnostics. However, the surface modification process of magnetic beads is often complex, and it remains a significant challenge to prepare high-performance magnetic beads easily. To overcome these drawbacks, herein we fabricated functional interface on magnetic bead with the various amino acid via the ring-opening reaction of amino acids with epoxy groups, with attempt to produce carboxylated magnetic beads (MPS-GA) in a convenient way. Results indicate that when compared to other amino acids, the phenylalanine magnetic beads (MPS-GA1) developed in this study exhibit strong adsorption for mouse immunoglobulin (IgG), streptavidin (SA), and protamine (PA), with an IgG adsorption capacity of 53.5 μg/mg and a coupling capacity of 52.5 μg/mg. It is found that electrostatic forces and hydrophobic interactions are key factors influencing biomolecular interactions. Additionally, these magnetic beads can generate strong chemiluminescent signals, significantly reducing background levels by up to 99.7 %. Therefore, the magnetic beads proposed in this paper can serve as carriers for chemiluminescent immunoassay (CLIA), providing new insights into the synthesis of high-quality magnetic bead.