This is a demo store. No orders will be fulfilled.
Enhanced water permeability and antifouling properties of cross-linked graphene oxide composite membranes with tunable d-spacings
Low flux and membrane fouling are major challenges in membrane distillation (MD) for treating concentrated wastewater. This study compared the performance of GO composite membranes with different interlayer distances , by covalently bonding the terminal amine groups of ethylenediamine (EDA) and 1,12-diaminododecane (DADD) with the carboxyl groups present on the GO sheets. The results indicated that the GO-DADD/PTFE membrane, with longer carbon chain cross-linking, achieved the highest flux and antifouling properties. At 70 °C, the pure water flux reached 68.5 kg/m 2 ·h, and the fluxes for treating NaCl, HA containing NaCl, and BSA containing NaCl were 29.8 %, 37.1 %, and 38.5 % higher than the uncrosslinked GO/PTFE, and 95.7 %, 121.2 %, and 146.9 % higher than the PTFE membrane, respectively. Through mathematical models for mass and heat transfer, the study identified the key to this enhancement as the increased d-spacing within the GO layer due to cross-linking, which weakened the Kelvin effect and enhanced the vapor partial pressure on the hot side. The unique surface structure and electrostatic interactions induced by long-chain cross-linking further boosted the antifouling effect. These modifications not only overcome the typical trade-off between retention rates and flux but also offer a scalable and efficient solution for advanced membrane distillation applications.