This is a demo store. No orders will be fulfilled.

Electric-field-aligned liquid crystal polymer for doubling anisotropic thermal conductivity

Communications Materials [2024]
Li Maohua, Gong Ping, Zhang Zhenbang, Li Linhong, Chen Yapeng, Qin Yue, Guo Yingying, Yang Rongjie, Zhang Jianxiang, Zhou Yiwei, Xu Kang, Wang Yandong, Do Hainam, Jia Xiaofei, Cai Tao, Lin Cheng-Te, Jiang Nan, Yu Jinhong
ABSTRACT

High thermal conductive polymers have become more important because equipment requires high performance, high-energy density, and high integration. There are different strategies to make high thermal conductive polymers, among which is the synthesis of polymers in the liquid crystal phase. However, the thermal conductivity of such material is rarely beyond 1 W m −1 K −1 because of the disordered molecular directionality. The disordered directionality between crystal zones limits the thermal conductivity in a specific direction. Here, we show a method for unifying the direction of crystal zones by applying an external electric field on the liquid crystal monomers. Meanwhile, by exposing the transparent equipment and specially designed photopolymerisable monomer in UV light, the liquid crystal monomer is in situ polymerised into a liquid crystal polymer with a high intrinsic thermal conductivity of 1.02 W m −1 K −1 . The molecular alignment was characterised and resulted in the resultant high conductivity.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.