This is a demo store. No orders will be fulfilled.

Dopant-Induced Electron Localization Drives Direct Current Kolbe Coupling of Biomass-Derived Carboxylic Acids

ACS Catalysis [2025]
Wenhua Zhou, Bolong Li, Gaobo Lin, Teng Guo, Chao Chen, Jie Zhu, Haoan Fan, Xuezhi Zhao, Lei Guo, Weiyu Song, Jianghao Wang, Tianfu Wang, Jie Fu
ABSTRACT

The Kolbe coupling of biomass-derived carboxylic acids presents a promising route for sustainable production of value-added chemicals. However, conventional direct current (DC) Kolbe electrolysis typically cleaves functional groups in carboxylic acids, significantly hindering its broader application. Herein, we demonstrate that dopant-induced electron localization in activated carbon (AC) facilitates decarboxylative coupling while preserving functional integrity. Experimental and theoretical results reveal that nitrogen doping in AC (N-AC) modulates the local electronic structure and enhances the adsorption capacity of carboxylic acids. Notably, N-AC exhibits a 10-fold increase in the conversion of 10-undecenoic acid compared to AC, with a selectivity of up to 60 ± 2% for the coupling product. More importantly, N-AC effectively catalyzes carboxylic acids with diverse functional groups. This study provides new insights into the structure–property relationship of N-doped carbon and advances the practical implementation of Kolbe electrolysis for biomass valorization.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.