This is a demo store. No orders will be fulfilled.

Disclosing the Nitrogen Sources via Isotope Labeling Technique and the Formation Mechanism of Pyrazine and Alkylpyrazines during the Heat Treatment of N-(1-Deoxy-d-xylulos-1-yl)-alanine and Exogenous Alanine

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY [2024]
Tong Zhou, Meigui Huang, Heping Cui, Shahzad Hussain, Khizar Hayat, Xiaoming Zhang, Chi-Tang Ho
ABSTRACT

The formation pathway and mechanism of various pyrazines were investigated during the thermal treatment of the alanine-xylose Amadori compound (Ala-ARP) and exogenous alanine (Ala). 15N-labeled Ala was used to coheated with Ala-ARP to clarify the nitrogen sources and the respective contributions of exogenous Ala and the regenerated Ala released from Ala-ARP to different pyrazine formation. It was found that exogenous Ala exhibited a priority in capturing glyoxal (GO) to form pyrazine during the thermal degradation of ARP. Compared to the Ala-methylglyoxal (MGO) model, a lower activation energy was required for the Ala-GO reaction, where the reaction dynamics of Ala-GO followed a zero-order model. In addition to forming pyrazine, the interaction between existing exogenous Ala and GO would accelerate the thermal degradation of Ala-ARP and retro-aldolization reaction of deoxyxylosones (DXs) to α-dicarbonyls. During this process, the release of regenerated Ala and MGO was promoted. Accordingly, as GO was expended by exogenous Ala during the initial stage of ARP-Ala degradation, the condensation between regenerated Ala and MGO became intensified, leading to the generation of methylpyrazine and 2,5-dimethylpyrazine. As a result, in the thermally treated mixture of Ala-ARP and exogenous Ala, 55% of the formed pyrazine originated from exogenous Ala, while 63% of the formed methylpyrazine and 57% of the formed 2,5-dimethylpyrazine were derived from regenerated Ala (120 °C, 30 min).

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.