This is a demo store. No orders will be fulfilled.
DFO-Modified Polydopamine Sulfonated PEEK Enhances Osseointegration through Macrophage Immunomodulation and Osteogenic Differentiation of BMSCs
This study aimed to develop a novel artificial joint prosthesis material with osteogenic properties. Deferoxamine mesylate (DFO) was immobilized on the porous surface of sulfonated polyetheretherketone (SPEEK) through polydopamine (PDA), resulting in a novel material designated as DFO-PDA@SPEEK (Abbrev. DFO-PS). DFO-PS induced macrophage M2 phenotype polarization, reduced inflammatory factor expression, promoted osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), and enhanced implant osseointegration and osteogenic capacity. In vitro evaluation demonstrated that DFO-PS significantly modulated immune and inflammatory responses, promoted angiogenesis, and enhanced osteogenic differentiation. In the rat model with femoral bone defect, in comparison to the control group, the DFO-PS group exhibited a 1.22-fold increase in trabecular thickness and a 1.51-fold enhancement in maximum pull-out force. This work demonstrates that DFO-PS represents a promising strategy for constructing multifunctional implants with biomineralization and immunomodulation properties for bone joint replacement.