This is a demo store. No orders will be fulfilled.

Development of Novel Peptide Inhibitors Adapted to the Surface Property and Morphology of S Protein RBD

International Journal of Peptide Research and Therapeutics [2024]
Liu Ziyang, Wei Yuping, Zhang Man, Zhu Xingyan, Liu Kun
ABSTRACT

Angiotensin-converting enzyme-2 (ACE2) is a important cell surface receptor of SARS-CoV-2 S protein. The initial stage of SARS-COV-2 cell infection involves the binding of the S protein to ACE2. Hence, this work presents an innovative strategy to designing ACE2-based peptide inhibitors by considering the surface property and morphology of the S protein RBD. The aim is to develop a short peptide inhibitor that can effectively inhibit S protein-ACE2 interaction Through computational analysis and molecular simulation, the surface properties and morphology of S protein receptor-binding structural domain (RBD) were investigated, while the key residues of ACE2 ligand-binding structural domain (LBD) were identified based on their contributions and non-covalent interactions. Then, peptide inhibitors, consisting of ACE2 key residues, were developed by fitting to the surface characteristics and topographical features of the S protein RBD. Molecular simulation showed that two novel short peptides, IEPFF (I5) and WIEPFF (W6) had high affinity for S protein RBD but a low affinity for the cell membrane. Cellular adsorption studies demonstrated that both I5 and W6 effectively blocked ACE2-S protein binding without significant cytotoxicity. Flow cytometry analysis revealed that both I5 and W6 effectively inhibited S protein binding to the ACE2, resulting in a significant reduction (75 and 79%, respectively) in fluorescence intensity after 30 min of incubation at a concentration of 200 μM. Both I5 and W6 were excellent potential anti SARS-COV-2 drugs. This work provides an innovative perspective for the development of functional peptides for the prevention and management of SARS-COV-2.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.