This is a demo store. No orders will be fulfilled.
Design, fabrication, and evaluation of antimicrobial sponge microneedles for the transdermal delivery of insulin
Transdermal drug delivery systems hold promise, but their effectiveness is often constrained by the skin’s barrier. Microneedles (MNs) improve drug permeability by creating micro-channels in the skin, yet they continue to face challenges such as infection risks and safety concerns. To overcome these challenges, a novel antimicrobial sponge MNs (ASMNs@PVP-INS) modified with polyvinylpyrrolidone (PVP) for insulin (INS) delivery was designed. Mechanical testing demonstrated that these MNs possess excellent mechanical strength, capable of withstanding at least 0.11 N per needle without rupture. In vitro drug penetration tests revealed that the MNs consistently released over 75 % of INS within a 6 h. In an animal model, ASMNs@PVP-INS reduced initial blood glucose levels from 22.4 to 5.72 mmol/L, effectively maintaining glucose control for more than 6 h without inducing hypoglycemia. Additionally, agar diffusion assays indicated that INS loading did not compromise the antimicrobial properties of antimicrobial sponge MNs (ASMNs). Skin irritation tests showed that ASMNs@PVP-INS exhibited mild irritation (PII < 0.6), with skin damage fully recovering within 8 h. Safety assessments indicated no significant toxicity to mice, with biochemical markers remaining within normal ranges, thereby confirming their good biocompatibility. In conclusion, ASMNs@PVP-INS hold promise as a novel drug delivery vehicle.