This is a demo store. No orders will be fulfilled.

Degradation of Butylated Hydroxyanisole by the Combined Use of Peroxymonosulfate and Ferrate(VI): Reaction Kinetics, Mechanism and Toxicity Evaluation

Toxics [2024]
Peiduan Shi, Xin Yue, Xiaolei Teng, Ruijuan Qu, Ahmed Rady, Saleh Maodaa, Ahmed A. Allam, Zunyao Wang, Zongli Huo
ABSTRACT

Butylated hydroxyanisole (BHA), a synthetic phenolic antioxidant (SPA), is now widely present in natural waters. To improve the degradation efficiency of BHA and reduce product toxicity, a combination of peroxymonosulfate (PMS) and Ferrate(VI) (Fe(VI)) was used in this study. We systematically investigated the reaction kinetics, mechanism and product toxicity in the degradation of BHA through the combined use of PMS and Fe(VI). The results showed that PMS and Fe(VI) have synergistic effects on the degradation of BHA. The effects of operational factors, including PMS dosage, pH and coexisting ions (Cl−, SO42−, HCO3−, K+, NH4+and Mg2+), and different water matrices were investigated through a series of kinetic experiments. When T = 25 °C, the initial pH was 8.0, the initial BHA concentration was 100 μM, the initial concentration ratio of [PMS]0:[Fe(VI)]0:[BHA]0was 100:1:1 and the degradation rate could reach 92.4% within 30 min. Through liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) identification, it was determined that the oxidation pathway of BHA caused by PMS/Fe(VI) mainly includes hydroxylation, ring-opening and coupling reactions. Density functional theory (DFT) calculations indicated that•OH was most likely to attack BHA and generate hydroxylated products. The comprehensive comparison of product toxicity results showed that the PMS/Fe(VI) system can effectively reduce the environmental risk of a reaction. This study contributes to the development of PMS/Fe(VI) for water treatment applications.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.