This is a demo store. No orders will be fulfilled.

Defect Passivation for Highly Efficient and Stable Sn-Pb Perovskite Solar Cells

Crystals [2024]
Tengteng Li, Fupeng Ma, Yafeng Hao, Huijia Wu, Pu Zhu, Ziwei Li, Fengchao Li, Jiangang Yu, Meihong Liu, Cheng Lei, Ting Liang
ABSTRACT

Sn-Pb perovskite solar cells, which have the advantages of low toxicity and a simple preparation process, have witnessed rapid development in recent years, with the power conversion efficiency for single-junction solar cells exceeding 23%. Nevertheless, the problems of poor crystalline quality of Sn-Pb perovskite films arising from rapid crystallization rate and facile oxidation of Sn2+to Sn4+have become key issues for the further development of Sn-Pb perovskite solar cells. Herein, we report the incorporation of triazinamide (N-(6-methyl-3-oxo-2,5-dihydro-1,2,4-Triazin-4(3H)-YL) acetamide) as an additive to regulate the crystalline growth of Sn-Pb perovskite films, resulting in films with low trap density and large grain size. The triazinamide additive effectively passivated defects in the perovskite films. As a result, the triazinamide-modified perovskite solar cells achieved a higher efficiency of 15.73%, compared with 13.32% for the control device, significantly improving device performance. Notably, the optimal triazinamide-modified perovskite solar cell maintained 72% of its initial power conversion efficiency after being stored in an air environment for nearly 300 h, while only 18% of the power conversion efficiency of the control perovskite solar cell was retained. This study proposes an effective strategy for fabricating highly efficient and stable Sn-Pb perovskite solar cells.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.