This is a demo store. No orders will be fulfilled.

Deep eutectic solvent-based eutectogels consisting of ZnCl2 and lignin for quasi-solid-state supercapacitors

Journal of Materials Chemistry A [2024]
Yunhua Bai, Xiong-Fei Zhang, Yufang Wu, Hu Liu, Jianfeng Yao
ABSTRACT

Eutectogels have attracted attention for use in flexible electronics and energy storage because of their high conductivity and good mechanical properties. In this work, using ZnCl2 as a hydrogen bond acceptor and lactic acid (LA) as a hydrogen bond donor, an inorganic salt-based deep eutectic solvent (DES) was designed. The DES was used to extract lignin from poplar sawdust, and then poly(vinyl alcohol) was added to the mixed DES/lignin solution to obtain the eutectogels. Due to extensive hydrogen bonding and Zn2+-induced coordination, the eutectogels present high ionic conductivity, good stretchability, and wide temperature tolerance. In particular, the presence of lignin endows the eutectogels with self-adhesive properties and enhanced mechanical strength. By regulating the lignin content, the optimal eutectogel sample exhibited an ionic conductivity of 23.8 mS cm−1, tensile strength of 331 kPa, and elongation at break of 1000%, and it could be stable for a long time at −20 °C. Furthermore, the eutectogel quasi-solid-state electrolyte in a zinc-ion hybrid supercapacitor has a high capacity of 251 mA h g−1 at 0.5 A g−1, and it provides stable adhesion and mechanical strength at low temperatures. After 10 000 charge/discharge cycles, these capacitors demonstrated over 86% capacitance retention and 100% coulombic efficiency.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.