This is a demo store. No orders will be fulfilled.

Damage-free non-mechanical transfer strategy for highly transparent, stretchable embedded metallic micromesh electrodes

COMPOSITES PART B-ENGINEERING [2025]
Zeqi Nie, Wenkai Yan, Xin Han, Huihuang Yu, Yapeng Zhang, Mengqi Tian, Xinyu Zhang, Yige Xiong, Peng Cao, Guanhua Zhang
ABSTRACT

Stretchable, flexible, transparent electrodes garner significant research interest as indispensable components of flexible optoelectronic devices. However, frequent mechanical transfers during processing pose a considerable challenge in preparing electrodes of scalable size with superior performance and intact structure. Herein, we present a stretchable embedded metallic micromesh (SEMM) electrode with high optoelectronic and robust mechanical properties. The SEMM electrode is fabricated via a damage-free non-mechanical transfer strategy with the assistance of a bifunctional metal transition layer that serves as both a seed layer during electrodeposition and a sacrificial layer during stripping of the electrode. Consequently, the SEMM electrode features a scalable size and an intact structure. By optimizing the electrodeposition parameters, the SEMM achieves high optical transmittance (∼83 %) and low sheet resistance (0.22 Ω sq −1 ), with a figure of merit reaching 8600–53 times greater than that of commercial polyethylene terephthalate-indium tin oxide (PET-ITO). Furthermore, the SEMM exhibits excellent mechanical stability, enduring up to 60 % of tensile strain and maintaining almost constant normalized resistance after 20,000 bending cycles. Based on the SEMM, a transparent film heater yields rapid response time, low operating voltage, and fast defogging capability. This non-mechanical transfer strategy offers a compelling approach for enhancing the structural integrity and scalability of stretchable embedded transparent electrodes.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.