This is a demo store. No orders will be fulfilled.

Cordycepin Ameliorates Psoriasis-Like Skin Lesion by Regulating p53/MDM2 Feedback Loop

MOLECULAR BIOTECHNOLOGY [2024]
Chen Ya, Zhu Congcong, Tai Zongguang, Lian Tianyan, Zhu Quangang, Chen Zhongjian
ABSTRACT

Apoptosis is a natural physiological process of programmed cell death. It is essential for maintaining the homeostasis of the body and the immune system. The dysfunction of apoptosis can lead to the development of autoimmune diseases. In psoriasis, the dysfunction of keratinocyte proliferation manifests as an impairment of apoptosis. Cordycepin is the major active component in cordyceps militaris and has pharmacological effects, including regulation of apoptosis. The pharmacological mechanism of Cordycepin in psoriasis remains unclear. In this study, bioinformatics analysis revealed that the mechanism may be associated with the p53 apoptotic pathway. Further, we confirmed in the experiments that cordycepin inhibited the interleukin (IL)-17A-induced proliferation of HaCaT cells and down-regulated the expression of proliferating cell nuclear antigen (PCNA) and Ki-67. Regulating the expression of apoptotic proteins BAX, Bcl-2, and p53 promote apoptosis. Further investigation of the upstream pathway of apoptosis revealed that cordycepin could normalize the abnormal p53-mouse double minute 2 (MDM2) feedback loop. In vivo results showed that the cordycepin gel could effectively improve imiquimod (IMQ)-induced psoriasis-like skin lesions in mice, and the p53-MDM2 pathway was verified at the protein level. In conclusion, the anti-psoriasis effect of Cordycepin and its potential mechanism have not been discussed in detail. However, our work supports the idea that Cordycepin can be further developed as an Active Pharmaceutical Ingredient (API) for the treatment of psoriasis.

MATERIALS

Shall we send you a message when we have discounts available?

Remind me later

Thank you! Please check your email inbox to confirm.

Oops! Notifications are disabled.